Методы очистки воды

Вот список наиболее популярных методов очистки бытовой воды в настоящее время:

Предлагаю таблицу применяемости методов водоочистки для всех известных видов загрязнений. Методики рассматриваются исключительно для бытовой водоочистки, не учитывая промышленные циклы, очистку стоков, всякую рекуперацию и прочие промышленные методы очистки сред. Мы говорим исключительно о бытовой водоочистке — о том, что Вы сможете собрать у себя дома для решения вопроса с водичкой в собственном доме. Итак… смотрим таблицу. Условные обозначения под таблицей подписаны.

Содержание

* — метод очистки может быть применен В НЕКОТОРЫХ ВАРИАНТАХ (иногда)

** — данный метод очистки широко применяется, но не является оптимальным

*** — метод очистки идеально подходит для этого вида загрязнений

Х — данный метод применять нельзя.

пробел — метод очистки для данных загрязнений не применяется

Тяжелые металлы

Под удалением тяжелых металлов подразумевается удаление солей тяжелых металлов (никеля, кадмия, ртути, цинка, кобальта), а еще точнее — ионов этих солей. Соли тяжелых металлов образуют стойкие соединения, трудно поддающиеся удалению. Проблема еще и в том, что различные соли тяжелых металлов имеют различную структуру и требуют разных подходов в очистке. Но не нужно беспокоиться об этом заранее. Обычно с удалением тяжелых металлов сталкиваются те, кто занимаются очисткой сточных вод. Но и в водоподготовке хозяйственно-бытовой воды иногда случается столкнуться с удалением тяжелых металлов. Обычно это загрязнение антропогенного характера. Крайне редко приходится сталкиваться с превышением ПДК по солям тяжелых металлов в воде скважин. Поэтому анализ на этот вид загрязнения делают только при подозрении на присутствие в воде подобных солей. Однако, в настоящее время нет четкого определения что такое тяжелые нет. Кто-то причисляет к тяжелым металлам особо токсичные соединения, кто-то металлы с атомной массой более 50, к которым относится и железо, кстати. Так что вопрос с тяжелыми металлами довольно не простой.

Удаление ионов солей тяжелых металлов:

  • Первый вариант удаления солей тяжелых металлов заключается в повышении pH до критического (для этих солей) уровня 8-9, при котором они выпадают в осадок, не без добавления коагулянтов и флокулянтов, конечно. Осадок удаляют отстаиванием, гравитационным методом — центрифугой, фильтрацией.
  • Второй способ — обратный осмос. В бытовых условиях годится обычная мембрана, в промке используются специальные мембраны устойчивые к специфическим агрессивным веществам.

Аммиак (NH3) и Аммоний-ион (NH4+)

Аммиак — это газ с характерным запахом, органическое соединение, чаще всего присутствует в стоковых водах животноводческих, садовых организаций и всяких пром. предприятий. Всем известный «нашатырь» (нашатырный спирт) и есть водный раствор гидроксида аммония. Все прекрасно знают этот запах — ближайшая ассоциация — общественный туалет. Аммиак широко используют в быту и промышленности, еще его используют для длительного обеззараживания воды на очистных и при нарушении схемы дозации он может незначительно (или значительно 🙂 ) превышать ПДК городской воды на ряду с остаточным хлором.

Аммиак относится к малоопасным веществам, но в соединениях может создавать токсичные вещества. Плотность этого газа в два раза меньше, чем у воздуха, молекула обладает высокой полярностью, потому он очень хорошо растворим в воде.

В воде он присутствует в двух формах: аммиак и аммоний. Их сумма составляет общий аммонийный азот.

Для эффективного удаления аммиака сначала определяют pH и жесткость воды.

Содержание аммиака а аммоний-йонов зависит от показателя жесткости воды. Аммиак присутствует в воде только при высоких показателях pH — больше 8, в обычных условиях (pH <преобладает аммоний. Удаляется в целом довольно легко и разнообразными путями, поэтому удаление аммония и аммиака отдельного процесса в бытовой водоочистке не требует.

Основные методы очистки воды от аммиака в бытовых системах водоподготовки:

  • дозирование гипохлорта натрия,
  • аэрация с последующей фильтрацией на сорбентах
  • ионообменным путем на цеолите,
  • ионообменным путем на сильнокислотном катионите (аммоний имеет положительный заряд)
  • обратный осмос

в очистке сточных вод и на городских ВЗУ используют и биологический метод.

Короче, бояться превышения ПДК по аммиаку в анализе не стоит. Если запах и привкус воды не беспокоит — значит и нет у Вас в воде никаких аммиачных загрязнений. А если есть — они убираются любым из методов водоочистки, который Вам предстоит применить.

Нефтепродукты

Если в Вашей воде нашли нефтепродукты: Поздравляю! Вы без пяти минут обладатель собственной нефтяной трубы! 🙂 И очень хочется надеяться, что когда-нибудь нефть будет бить фонтаном в моем доме, но, к сожалению, правда жизни в том, что преимущественно нефтепродукты в воде — это антропогенный фактор, влияющий на воды верхних водоносных слоев — верховодку и грунтовые воды, загрязненные пром.преприятиями. Хотя, бывает, в местностях с нефтяными залежами нефтепродукты попадают в воду скважин.

Впрочем, это большая редкость. В Московском регионе это будет 100% антропогенным загрязнением. При обнаружении превышения нефтепродуктами ПДК подземного источника водоснабжения нужно сделать расширенный анализ воды для исключения попадания в воду тяжелых металлов и других опасных соединений, которые обычно в воде не обнаруживают.

Удаляются нефтепродукты:

  • в больших концентрациях отстаиванием, специфическими механическими методами очистки, как, например, бензомаслоуловителями (иначе их называют жироуловителями — уловить… и на продажу :)) шутка, обычно сжигают)
  • в малых концентрациях химическими методами с использованием реактивов: эмульгаторы эмульсий,
  • (ПАВ) Поверхностно-активными веществами.
  • Сорбентом МС (простой и действенный способ)
  • специальным волокном
  • биологическим путем (нефть — это органика)
  • угольной сорбцией (наиболее пригодный метод для бытовой водоочистки после сорбента МС).
  • пенополиуретановыми нефтесорбентами, алюмосиликатом, специальным песком

Нитраты (NO3) и Нитриты (NO2)

Нитраты — соль азотной кислоты. Нас постоянно пугают нитратами в овощах, поэтому обнаружение нитратов в воде вызывает тихий ужас, но не все так страшно. Нитраты сами по себе безобиды, но в организме они могут преобразовываться в нитриты и нитрозамины, которые уже являются сильно токсичными веществами! При отравлении ими человек буквально испытывает дефицит кислорода! Выводятся нитриты из организма долго. Особенно опасны нитриты детям и чем мельче детеныш, тем опаснее для него нитриты. Поэтому будьте бдительны! Нитраты и нитриты в питьевой воде — опасны для Вашей семьи! При превышении нитратов в воде следует принять меры по очистке такой воды. Пугаться не стоит, они могут коварно проявиться только при длительном употреблении в пищу, для хозяйственно-бытовых нужд нитриты и нитраты в воде опасности не представляют, но Вы же знаете своих детей — они пьют воду из всех кранов дома.

Нитраты являются антропогенным загрязнением воды, попадают в верхние слои (верховодку и грунтовую воду) с сельхоз.полей и сточных вод. Практически не встречаются в артезианских и глубоких скважинах на песок.

Очистка воды от нитратов и нитритов:

  • Ионообменным путем с помощью специальной нитрат-селективной смолы. Lewatit MonoPlus SR7, либо Purolite А-520Е, либо Resinex NR-1 Эти смолы намного дороже обычного катионита и удаляют из воды только нитраты и нитриты. Еще предположительно АВ-17-8с смола подходит для удаления нитратов.
  • обратным осмосом для получения чистой питьевой воды.

Определить наличие нитратов в воде можно с помощью специального экспресс-теста ВИДЕО

Сероводород (H2S)

Сероводород — это газ, имеющий характерный запах, который мы все прекрасно знаем — запах тухлых яиц. Это я не сам придумал, так в Википедии написано. Формула его химичская — H2S, а это значит, что сероводород, диссоциируясь является восстановителем и помимо вонизма создает еще ряд неприятностей в процессах водоочистки — замедляя и затрудняя процесс окисления металлов. Кроме того, сероводород не поддается удалению ионообменными смолами и тем самым связывает руки всяким ГЕЙзерам и ЭГОдарам для продвижения их чудо-смесей для удаления всего и вся на основе ионообменных смол, иначе рынок был бы завален нафиг этими неадекватно дорогими продуктами.

Сероводород редко отражают в анализе воды «благодаря» его летучести. Без специального консерванта довезти воду до лаборатории, в которой все еще остался сероводород для количественной его оценки весьма затруднительно. Тем более, что концентрации его микроскопичны — ПДК 0,003мг/л, ну и 0,006 уже считается большим количеством.

Сероводород не является опасным газом. Да, он ядовит в больших концентрациях, но это черезвычайно большие концентрации, в бытовых условиях с которыми нам столкнуться не светит. В тех концентрациях, с которыми мы имеем дело сероводород является лечебным вонючим ветерком. Но присутствие его в системе водоснабжения неприятно. Это двойная вонь. Сама по себе холодная вода пахнет, а в боилере этот запах усиливается многократно + сероводород является питанием для бактерий, которые для нас совершенно нежелательны.

Сероводород удаляется несколькими способами:

  • номер один — дозация гипохлорита натрия. Сероводород распадается на серу и воду. Сера в виде сульфатов задерживается в загрузке обезжелезивателя (5 мг АХ на 1мг H2S)
  • номер два (наиболее широко используется) — аэрация. Открытая или напорная. Про такой способ говорят: «отдуть сероводород». Т.к. он труднорастворим в воде, то охотно замещается воздухом
  • озонирование (0,5мг озона на 1 мг H2S) рискованно образование серной кислоты при передозивке озона
  • пиролюзит, некоторые сорбенты удаляют сероводород
  • цеолиты удаляют небольшое количество сероводорода
  • угольная сорбция
  • обратный осмос

Сульфаты (SO42-)

Сульфат-ионы являются смежным «продуктом» сероводорода. Иногда их в анализе ставят в один ряд, что не верно. Сульфаты не несут никакого вреда человеку, их концентрация по ПДК в питьевой воде 500мг/л — это в 166 тысяч раз больше, чем концентрация сероводорода и в 5000 раз больше, чем концентрация марганца. Сульфат магния, сульфат натрия, используются в медицине, в качестве лекарственных средств. Тем не менее, большое количество сульфатов, наравне с хлоридами может придавать воде горький вкус. Кроме того, сульфат кальция может откладывать на теплообменниках, как и карбонат кальция.

Удаление сульфатов делает:

  • Ионообменным путем — сильноосновными анионитами (может быть добавкой к катиониту в умягчителе)
  • обратным осмосом

Хлориды (HCl)

Хлориды — это соединения хлора с различными металлами и минералами, а иначе говоря — хлорные соли. Они вредны для здоровья в превышении ПДК 350мг/л, к тому же придают повышают коррозийные свойства воды. Кроме того, вода, насыщенная хлоридами, при попадании в организм человека, раздражает кожу, дыхательные пути, глаза, слизистые оболочки.  И поэтому в водоочистке их надо удалять еще маленькими.

Удаляют хлориды:

  • угольной сорбцией
  • обратным осмосом

Фториды (Фтор, F)

Фториды — это соли фтора. Являются высокотоксичными веществами, фториды делают людей безинициативными и безвольными существами ВИДЕО_1, ВИДЕО_2, ВИДЕО_3 поэтому в пищу не используются. Фтор играет важную роль в образовании и регенерации костей, зубов и превышение его концентраций может вызывать нарушение минерализации костных тканей животных и людей (флюороз). При превышении ПДК в 6 раз может быть серьезное токсическое отравление с поражением костного мозга.

В природной воде (чаще в артезианской) редко обнаруживается превышение ПДК фтора и фторидов, поэтому реальное его превышение как правило говорит об антропогенной природе (загрязнение окружающей среды плохими дядями и тетями) и заподозрить превышение фтора можно по органолептическому анализу — ощущению химического запаха и привкуса воды.

Удаляются фториды следующими методами:

  • сорбцией угольной (углями марок СКТ, БАУ, КАД)
  • ионным обменом сильноосновными анионитами
  • сорбцией на специфическом материале — гидроокись аллюминия
  • обратным осмосом
  • электрокоагуляцией

Бактерии, Вирусы (Общее микробное число)

  • хлорирование
  • озонирование
  • ультразвуковое обеззараживание
  • ионы серебра
  • ионообменным путем на китаоните Purolite C-100Ag, С-150Ag
  • угольная сорбция
  • обратный осмос
  • УФ-облучениенах

Запах и привкус воды

Вода — H2O не обладает ни вкусом ни запахом. Но такая вода в природе не существует. Мы всегда имеем дело с водными растворами, но говорим «вода» для простоты. Запах и вкус воды обусловлены растворенными газами, органическими и неорганическими веществами, нефтепродуктами и прочими загрязнениями и часто мы можем органолептически сказать чем загрязнена вода — железом, сероводородом, аммиаком, либо органикой. Если присутствует запах воды, значит есть что-то в этой воде «дающее» этот запах. Следует очистить эту воду и запах и вкус воды исчезнут.

Методы улучшения органолептических свойств воды:

  • весь спектр методов очистки воды от обнаруженных загрязнений
  • угольная сорбция
  • обратный осмос

Мутность, Цветность

Мутность и цветность воды обусловлены так же как и вкус с запахом наличием в воде загрязняющих веществ. Похоже, что эти слова не несут в себе никакой информации, потому что каждому и так понятно, что вода по своей природе не имеет ни цвета ни мутности, она совершенно прозрачна, как и воздух, который может быть сегодня кристально чистым и видно за 30 км вдаль, а завтра пришел циклон и видимость снизилась до соседнего дома. Тоже самое и с водой. Часто мы имеем дело с мутной водой, с водой, окрашенной в рыжий, коричневый, желтый цвета. Сама по себе цветность и мутность воды не говорит о характере загрязнений, но какие-то загрязнения точно есть. Цветность определяется в лаборатории после фильтрации воды через бумажный фильтр, что говорит о более мелких частицах, которые придают цвет воде.

Удаляются цветность и мутность по существу всеми доступными механическими способами, как то:

  • осветлением. Это пропускание воды через осветляющую загрузку (сорбент) засыпного фильтра.
  • фильтрацией с помощью разнообразных картриджей и мембранн, в том числе и обратным осомосом
  • коагуляцией, флокуляцией, затем отстоем воды

Железо, Марганец

Обезжелезивание и деманганация воды — наиболее насущные процессы в современной водоочистке (по средней полосе РФ сужу). Читайте статью на эту тему. Железо присутствует в воде во множестве форм и все эти формы нарушают органолептические свойства воды и снижают ее пригодность для хоз-бытовых и питьевых нужд вплоть до полной непригодности воды. Основные формы нахождения железа в воде, с которыми сталкивается человек, задавшийся целью очистить воду в своем доме — это двухвалентное растворенное состояние, трехвалентное нерастворенное коллоидное и в виде более крупных частиц, а так же органика — железобактерии. Тоже самое касается марганца, который окисляется труднее и медленнее, но и его, как правило, значительно меньше в воде, чем железа.

Методы удаления железа и марганца из воды не хватит пальцев на руках и ногах, чтобы перечислить все, основные бытовые:

  • трехвалентное железо удаляется осветлением воды
  • окислением дозацией гипохлорита, либо аэрацией напорной и безнапорной и последующая фильтрация на загрузке обезжелезивателя, которая может быть каталитической или инертной.
  • окисление и фильтрация с помощью автокаталитических загрузок, проявляющих окисляющие свойства без внешних окислителей (без кислорода и активного хлора).
  • двухвалентное железо удаляется ионообменным путем с помощью сильнокислотного катионита
  • сорбцией угольной удаляются небольшие концентрации железа
  • обратным осмосом
  • картриджи обезжелезивания с успехом применяются при незначительных превышениях железа и малых расходах воды

Водородный показатель pH

pH — водородный показатель. Это степень диссоциации молекул воды на Н+ катион и ОН- гидроксид анион в 10 минус (1-14) степени. Для простоты отображается, как pH от 1 до 14, где 7 — нейтральная вода, меньше 7 кислотная реакция, больше — щелочная. Чтобы разобраться в этой крайне непростой теме мне понадобилось пара лет, но Вы сможете сразу понять о чем идет речь, если загляните на страницу по ссылке водородный показатель — там есть пара неплохих учебных видео, которые прекрасно — быстро и просто объясняют это явление.

Степень диссоциации воды — pH, водородный показатель оказывает критическое влияние на процессы окисления растворенных металлов. Так, например, большинство загрузок обезжелезивателя полностью утрачивают свои каталитические свойства в отношении железа при pH ниже 6, а ниже 5.5 не работает ни одна каталитическая загрузка. Марганец удаляется при pH от 7, тяжелые металлы от 8-9.

Поэтому pH — крайне важен для процессов очистки воды, но так же pH сильно влияет и на здоровье человека. Мы все слышали словосочетание «кислотно-щелочной баланс» выдуманный маркетологами! Дай Бог здоровья маркетологам… а для здоровья человека питьевая вода должна иметь pH 7.5-7.9, что не верно отображено СанПиНом в их ПДК 6-9, потому что нельзя постоянно пить воду с pH ниже 7, но это долгая тема… мы говорим о методах водоочистки.

Процессы водоочистки связаны с окислением тех или иных веществ, я ни разу не слышал о том, чтобы приходилось применять методы восстановления. Поэтому pH нужен чем выше, тем лучше. Обычно исходная вода имеет pH от 6.8 до 7.5 — это нормальный показатель и как-то его корректировать для успешной очистки воды не требуется. Эта же вода годится и для питьевых нужд. Но если pH ниже 6.8, то его нужно повышать.

Методы повышения pH и водоочистка с низким pH:

  • с помощью pH — коррекции. Пропускание воды через загрузку Кальцит.
  • с применением фильтрующих сред, повышающих pH, например Сорбент МС
  • реагентным методом — дозация гидроксида натрия
  • применение для очистки воды с низким pH ионообменных процессов на сильнокислотных и сильноосновных смолах.
  • Коррекция pH с помощью картриджа после водоочистки

Окисляемость перманганатная

Перманганатная окисляемость характеризует общее количество растворенных в воде органических и минеральных веществ, окисляемых при помощи перманганата калия, выражается в мг О2 на литр. (мгО2/л) Буквально означает: «Сколько кислорода затрачено на полное окисление всех органических веществ, растворенных в анализируемой воде».

Этот обобщающий параметр характеризует общую степень загрязнения воды органическими веществами, т.к. их природа крайне разнообразна (природные, техногенные) и чтобы выявить каждый вид и его количество нужно сделать десяток дорогостоящих сложных анализов. А здесь мы быстро получаем результат всего лишь добавив пару капель реагента в воду.

Итак, высокая перманганатная окисляемость — это органические вещества — гуминовые и фульвокислоты, загрязнения антропогенного характера (загрязнения с полей, ферм, пром.предприятий). Норма ПДК СанПиН — не более 5мгО2/л

Методы удаления органических веществ по сути делятся на два направления извлечение и разрушение:

  • Окисление дозацией гипохлорита, аэрацией или озонирование с последующей фильтрацией на сорбентах или Greendsand
  • Ионообменные смолы-органопоглотители, так называемыми «скавенжеры» (слабоосновные аниониты с пористой структурой)
  • Разрушение жестоким ультрафиолетом (эффективно только в замкнутых циклах, например бассейны)
  • Сорбция угольная (метод извлечения)
  • Обратный осмос (фильтрация через мембрану и смыв в канализацию)
  • Коагуляция и отстой (открытые емкости)

Хлор остаточный

Остаточный хлор наблюдается в воде из городского водопровода. Вода хлорируется для удаления органических веществ и препятствия заражению воды во время перемещения ее от очистных сооружений к потребителю внутри трубопровода.

Остаточный хлор так же имеет место быть в системах очистки воды с применением дозации гипохлорита. Помимо органолептического обнаружения (вонизма) хлор плохо влияет на здоровье человека, не рекомендуется пить хлорированную воду и тем более кипятить ее с целью удаления хлора.

Методы удаления остаточного хлора:

  • Угольная сорбция
  • Выветривание в открытой емкости

Общая минерализация (Сухой остаток)

Сухой остаток определяется в лаборатории (в мг), как вес остатка после полного испарения отфильтрованной бумажным фильтром воды.

Характеризует (частично) общую минерализацию, иначе говоря общую солевую насыщенность воды, а еще проще говоря — общее количество растворенных в воде веществ. Сухой остаток и общая минерализация немного различны, т.к. при испарении из воды уносятся многие летучие вещества, входящие в состав минерализации, но для наших целей бытовой водоочистки эти понятия очень схожи и разграничивать их просто незачем. Сухой остаток характеризует количество именно растворенных веществ, потому что взвеси — мутность, цветность не являются частью раствора, а как бы «плавают» в воде — прежде, чем определять сухой остаток их удаляют бумажным фильтром. Газы улетучиваются во время выпаривания воды.

В жесткой воде общая минерализация может превышать 1000мг/л — это очень много, а хорошей питьевой воде минерализация не превышает 100-150мг/л, вода очищенная обратным осмосом имеет общую минерализацию 15-30 мг/л

Методы снижения минерализации:

  • известково — содовый реагентный метод.
  • обратный осмос
  • дистиляция

Жесткость общая

удаляется умягчением



Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *